• This Forum is for adults 18 years of age or over. By continuing to use this Forum you are confirming that you are 18 or older. No content shall be viewed by any person under 18 in California.

Stability Formula for Aluminum Tipped Bullets (Spreadsheet attached)

Most know that Don Miller published an accurate formula for computing gyroscopic stability of constant (or near constant) density bullets in 2005. This formula has been incorporated in several ballistics calculators including JBM, ColdBore, etc. Don knew that his formula would be overly conservative (predict low stabilities) for bullets whose density varied significantly along their length, so when I contacted him in 2010, he was eager to collaborate and develop an accurate formula for plastic tipped bullets which we experimentally validated in 2011 and published in Precision Shooting in early 2012. This formula has also been incorporated in several ballistics calculators.

Before Don passed away in 2012, he expressed a desire that his formula be adapted for open tipped match bullets and we shared some ideas for the development and testing of a stability formula for open tipped match bullets. This formula was validated experimentally and published earlier this year.

As aluminum tipped bullets have become more popular, the requests for info on stability of aluminum tipped bullets have increased, so yesterday, we finally added a formula for aluminum tipped bullets to the spreadsheet. Due to the paucity of aluminum tipped bullets, this formula has not yet been experimentally validated, so for now, we are estimating its uncertainty as 10% rather than 5% for the constant density, plastic tipped, and open tipped match formulas that have been experimentally tested. This formula is essentially a linearly interpolation (or weighted average) between two formulas that are known good (the constant density case and the plastic tipped case).

Like all ballistic calculators, the accuracy of the outputs depends on the accuracy of the inputs. You really need an accurate bullet weight, total length, length of the full density portion, twist rate, and environmental conditions. A reloading scale, calipers, and Kestrel are sufficient, but the claimed barrel twist rate of the manufacturer usually is not. There are some good sources on measuring it yourself.

The spreadsheet is attached. We welcome valuable experiential feedback on the accuracy of our formulas, but feedback is difficult to assess if the inputs have not been measured with confidence and if it does not include specific observations about why you think the bullet is or is not stable. Theoretical discussions are less valuable unless you are comparing our predictions with those of PRODAS. Accuracy observations are harder to relate to stability than observations of key holing, significant yaw, or accurately measured ballistic coefficients.

The adapted stability formula generally predicts a higher gyroscopic stability for aluminum tipped bullets than the original formula that assumes constant density. This is because the moment of inertia about the tumbling axis is lower for aluminum tipped bullets than for bullets of more constant density. The practical result is that a given rifle barrel might actually stabilize an aluminum tipped bullet in cases where stability of a constant density bullet of the same weight, caliber, and length, might me marginal or less than 1.0.
 

Attachments

A few comments are in order, given the varied techniques used to produce aluminum tipped bullets.

The accuracy of the stability formula depends on a quality made bullet. Corbin sells the aluminum bullet tips, and we are aware that a number of amateur bullet makers are making these bullets, either with the Corbin dies or by modifying an existing off-the-shelf bullet to accept the new tip.

If the manufacturing process disturbs the bullet symmetry so that the center of gravity is no longer along the bullet axis, the bullet will be much less stable than expected. Further, a noticeable seam or shoulder where the base of the tip meets the main body of the bullet will create much greater drag at the front of the bullet, thus increasing the overturning moment and reducing SG.

If your bullets are made with the same quality as the 50 cal AMAX and the better custom makers that are using Corbin's aluminum tips, you can expect the stability calculator to provide accurate results.
 

Upgrades & Donations

This Forum's expenses are primarily paid by member contributions. You can upgrade your Forum membership in seconds. Gold and Silver members get unlimited FREE classifieds for one year. Gold members can upload custom avatars.


Click Upgrade Membership Button ABOVE to get Gold or Silver Status.

You can also donate any amount, large or small, with the button below. Include your Forum Name in the PayPal Notes field.


To DONATE by CHECK, or make a recurring donation, CLICK HERE to learn how.

Forum statistics

Threads
166,769
Messages
2,224,034
Members
79,848
Latest member
Rugersdad
Back
Top